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The microstructure of a thermotropic liquid crystalline polymer orientated in a magnetic field is observed to 
consist of tessellated domains of high alignment bounded by inversion walls. The presence of these walls 
limits the degree of global orientation achievable with a given field strength, and leads to the rapid loss of 
orientation on removal of the field. A supra-molecular lattice model for simulating textures in liquid crystals 
is utilized to simulate the effect of an applied field on a nematic, and the role of disclinations in the formation 
and destruction of the network of walls is considered. © 1997 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

When main-chain thermotropic liquid crystalline poly- 
mers are exposed to a magnetic field while held in the 
liquid crystalline phase (aboye ~300°C), the molecules 
are observed to reorientate~ along the field direction 
because of their diamagnetic anisotropy. The results 
presented in this paper were obtained using a specially 
synthesized random copolymer of hydroxybenzoic and 
hydroxynaphthoic acids in the ratio 3:1 and of molecular 
weight 5000 (hereafter referred to as BN)~. 

Previous measurements of the kinetics of the orienta- 
tion process I have indicated that the rate of orientation is 
initially high, but decreases until a maximum degree of 
orientation is achieved which is less than perfect. The 
rate increases with the square of the strength of the 
applied field. Removal of the field while the sample is 
held in the nematic phase leads to a 'relaxation' of the 
orientation 2 which decays rapidly to zero 3'4. 

Both the limitation of the degree of orientation under 
the applied field, and the loss of this orientation on 
the remowll of the field may be explained in terms of 
residual elastic defects, such as inversion walls, that are 
'trapped' in the material by the field. As the field strength 
is increased, the defects are more tightly compressed, 
and the global orientation is increased. If the field is 
removed (while the material is held in the liquid 
crystalline phase such that the molecules are still 
mobile), the compressed elastic deformations associated 
with the defects rapidly 'spring back' to occupy more and 
more of the sample volume and thus decrease the 

* To whom correspondence should be addressed 
The local parallelism of  the directors in the liquid crystal is referred 

to here as 'alignment' .  The direction of  this alignment may vary across 
the sample. The 'orientation'  of  a sample is the degree to which the 
directors lie parallel to some fixed direction (e.g. the direction of  the 
applied field) on a global scale. Thus,  for example, the areas of  
alignment, initially in random directions may be reorientated to lie in a 
single direction on application of an external field 
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orientation. The development of microstructure has 
been studied by Anwer and WindleS; this paper extends 
this work as a detailed study of domain walls and their 
organization into networks. 

OBSERVATIONS OF MICROSTRUCTURE 

Extruded pellets of the samples were ground to a fine 
powder (~50#m), melted and quenched. Scanning 
electron micrographs (SEMs) of samples prepared in 
the absence of a field showed local molecular alignment 
forming a randomly orientated texture on a scale of 
about 30 #m. The overall orientation of such samples, as 
measured by wide angle X-ray scattering (WAXS), was 
z e r o .  

On orientation in the melt under an applied magnetic 
field, a characteristic texture was observed using the 
methods of both transmission optical microscopy 
(TOM) of thinly ground sections and scanning electron 
microscopy (SEM) of fractured samples. As reported 
before 5, the texture consisted of very highly aligned 
regions with the molecular direction lying in the field 
direction, bounded by 'walls' of misorientation. These 
regions have been described as 'domains', as generally 
defined 6. They were elongated in the field direction: a 
field of 1.12 Telsa for 30 min giving dimensions of about 
300 #m long (in the direction of the field axis) by 100 #m 
wide. The optical contrast observed across the domain 
walls was consistent with the structure of inversion walls 
as described by Nehring and Saupe 7. 

Examples of the two limiting types of inversion wall in 
a field-orientated liquid crystalline sample, the splay/ 
bend type and the twist type, are shown in Figures la 
and lb. The splay/bend and twist wall structures are 
analogous to 180 ° N6el and Bloch walls respectively, as 
understood for ferromagnetic materials. Figure 2a shows 
the domain texture of a field-orientated sample. The 
scale of the domains is the same as for those observed 
optically 5 and the organization of the walls may be 
traced out, as shown in Figure 2b. 
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Figure ! SEMs of fracture surfaces of  BN. molecular weight 5000 held 
for 30rain at 300 C in a field of 1.12T. (a) An example of a spla_w 
bend wall. The directors rotatc about an axis perpendicular to the 
micrograph, in the plane of the wall. (b) A tx~ist wall. In this case the 
wall lies in the plane of the micrograph, and the rotation axis of  the 
directors lies perpendicular to this. The fractured ends show how 
successive layers of  polymer lie at different angles to the field direction 

The walls meet at triple junctions, giving a continuous 
network of tessellating domains. Within such a network. 
the wall area, which is associated with distortion of the 
liquid crystal, should be minimized, and Thomson s, 
working on the shapes of bubbles contained in foams, 
has predicted that such shapes would be fourteen sided 
figures tetrakaidecahedrons. It is also known from the 
pioneering work of Plateau 9 that only three walls can 
meet to form lines and that only four such lines can meet 
at a point. More recent theories m can predict lower 
energy structures using combinations of  domains of 
different sizes, but experimentally all the domains 
observed in the orientated liquid crystalline polymer 
specimens appear to be of  equal size. Thus the observed 
domain structure may be thought of as a network of 
interlocking triple point lines with the domain walls 
defining the planes between them. 

It has been observed 34 that the structure which 
develops as the orientation relaxes after the field is 
removed is coarser than that in samples held for the same 
period in the absence of a field. 

THE EFFECT OF A M A G N E T I C  FIELD ON A 
D O M A I N  WALL 

Under the influence of an aligning field, it is expected 
that domain walls would become narrower, increasing 

Field ! I 
300#m 

bl 

• . / >  
' °,% 
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Figure 2 (a) SEM of a fracture surface of BN, M,~ 5000, treated for 
30 rain in a field of  1.12 T at 30ffC. The domain walls are outlined in 
(hi. Note the high level of  orientation within the domains, and the wall 
~tructures boundmg them 

the volume of the domains and thus bringing more 
directors towards the field direction. This development is 
limited when the increased elastic energy associated with 
the narrowing walls offsets the gains associated with the 
increased orientation to the field within the domains. The 
equilibrium wall width as a function of the applied field 
strength has been measured for two similar polymers TM 

and the results are reproduced in Figure 3. The angle of  
the director to the field direction varies across the wall 
according to the relation 12 

B ~ Kd20 
~'~ - s i n 0 c o s 0 -  = 0  (I) 

t q) d-v2 

where K is the elastic constant (assuming all distortion 
types to have the same elastic constant), #0 is the 
permeability of  free space and Xa is the anisotropy in the 
diamagnetic susceptibility. This has the solution II 

(2) 

and so the director only becomes exactly parallel to the 
field at infinite distance from the wall centre. Defining the 
wall limits as the planes on which the directors have 
orientated to within, say, 5 of  the field direction, the 
measured widths are seen to depend on the field strength 
as shown in Figure 3. Furthermore the width of the wall, 
H.', can now be expressed as 

6 (#oK~ '/'2 
w ~ # \~77./ (;) 
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F i g u r e  3 The relationship between the domain boundary width and 
the reciprocal of the applied field strength for BN (g) and for a similar 
main-chain thermotropic polymer with flexible sequences in the 
backbone (D) ll . Reproduced from ref. 5 
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Figure 4 The shape of a domain boundary as given by the variation in 
angle of the director as the boundary is traversed for different ratios of 
the elastic constants for the splay and bend distortions (KI and K3 
respectively). The ratios from the inner to the outer curves are: 
K1/K 3 = 1/10, 1/2, 3/4, 1 (dashed line), 4/3, 2, 10. The dark points are 
angles of directors as measured from electron micrographs--the 
different symbol shapes each representing one of the three different 
micrographs 

which enables the ratio K/Xa to be determined from a 
linear fit to the data. Using a diamagnetic anisotropy 
of Xa = 1.1 × 10 -s which may be typical of main-chain 
liquid crystalline polymer systems 13,14, the data of 
Figure 3 give a value of 7 x 10-14N for the elastic 
constant, K. Bearing in mind that these data are from 
two different polymers which may have different values 
of X~ (the gradient of the data from the more flexible 
polymer alone was estimated to be lower in the original 
publication~l), and that the elastic constants for the splay 
and bend distortions are not expected to be equal, the 
value predicted for the elastic constant is nevertheless in 
the expected range. 

Equation (2) is a function whose shape is independent 
of the field strength, that is the plot of the angle of the 
director to the field axis against the fractional distance 
across the wall width (defining the edges of the wall as 
some arbitrary angle, as above) will be the same for all 
field strengths. The shape of a splay/bend wall will, 
however, be dependent on the relative sizes of the splay 
and bend constants. Meyer is demonstrated that for 
polymer liquid crystals the splay constant (K1) increases 
with molecular weight because to maintain constant 
density in a region of divergence requires a segregation of 
chain ends which invokes an entropy penalty. K2 and K3 
do not continue to increase with molecular weight as they 
reach a limit which depends upon the persistence length 
rather than the chain length 16. Experimental values for 
the elastic constants in a copolyesteramide have been 
reported by de'N~ve et al. 17 as around 

Kl = 10 -8 N 

K2 = 10 -1° N 

K 3 = 10 -9 N 

for a polymer with molecular weight 20 000. The polymer 
measured in this case is, however, of a length much closer 
to the persistence length (with molecular weight 5000), 
and so the splay constant is perhaps expected to be not so 
much greater than the bend constant. 

Equation (1) may be extended for the case of 
Kl ¢ N312 

xaB2sinOc°SO#o - K, cos 0ddx (c°S0dxxd0) 

d0) 
- K3 sin 0 sin 0 dxx = 0 (4) 

Hence 

d20 sinOcosO( #°K - ( R -  1)d0) 
\Xa B2 dxx 

dx 2 = (R - 1) sin 2 0 + 1 (5) 

where R is the ratio of the splay/bend elastic constants, 
so: KI -- RK3 = K. By solving this analytically, one may 
predict the shape of the wall for different ratios of the 
splay and bend constants as shown by the continuous 
curves of Figure 4. The change in shape is independent of 
the ratio of K to B, and the shape is not greatly altered 
by increasing the ratio of the elastic constants beyond 
about 10 in either direction. Basically, for Kl > K3 the 
orientation changes linearly with position across the 
wall, while for K1 < K3 the orientation changes much 
more steeply with position on approaching the centre. 
The angular change in the director across the wall has 
been measured from SEMs of three walls in magnetically 
orientated samples. The data, plotted in Figure 4, are to 
the outer side (high splay side) of the K1 = K3 curve, 
although it is difficult to determine a precise ratio. 

THE LATTICE MODEL 

A lattice model, developed to simulate the textures 
18 21 observed in liquid crystals - , may be applied to the 

case of field orientated samples. A cubic array of vectors, 
each representing an area of good local orientation 
(Figure 5), is set up either in initially random orientations 
or to represent a particular initial texture. Each vector is 
considered to represent a local director (the average 
orientation of many mesogenic units) and thus the model 

POLYMER Volume 38 Number 3 1997 679 



Domain structures. H. E. Assender and A. H. Windle 

d 

The DIRECTOR is 
the symmetry 

direction of the 
molecules in the cell 

/ / / / / / 

m 

Each cell is 
associated with 
a DIRECTOR 

~ Start with a random 1 
array of unit vectors 

, - the director lattice 

~r  Pick a director at 
andom from the anay..) 

~. Move the vector a small ~ 
I increment down the path of I 
k steepest gradient in energyJ  

Q Plot the resulting ) ~ 
microstructure 

Figure 5 The supramolecular lattice model. Each cell is characterized by a director, and is taken to be much larger than molecular dimensions. On the 
right the model's algorithm is outlined. Each cell is visited at random, and the orientation of its vector changed on a path which will reduce its energy 
with respect to the orientation of the directors of the six nearest neighbour cells 

is on the supra-molecular scale. These local directors 
have an energy associated with their misalignment in 
relation to their six nearest neighbours. The energy is 
given by the expression 

fi 

E ~ sinZ(0, • - o) (6) 
i I 

where (Oi- o) is the angle between the vector under 
consideration and its ith neighbour. 

The directors are visited at random in the model and 
moved through a small angle down the path of steepesl 
energy gradient: the algorithm is illustrated in F~gure 5. 

The effect of a magnetic field may easily be included 
into the model algorithm by the introduction of a seventh 
term to the energy equation. The field will have a similar 
aligning effect as a neighbouring vector: when the 
director lies parallel to the field the energy is a minimum, 
and when it lies perpendicular, it is a maximum. The 
energy expression becomes 

E = Fsin:(0~ - o) + ~ sin-~(0, - o} (7} 
i ] 

where (Or- O) is the angle between the vector and the 
field direction and F is the field coefficient giving the 
relative energies of the elastic distortions and misalign- 
ment to the applied field. 

The supra-molecular lattice model has been utilized to 
simulate the effect of the inversion walls narrowing under 
the influence of an applied field. Figure 6 shows results of 
the simulations of a field applied to a splay-bend wall. 
The initial conditions (Figure 6a) define a wall in the v: 
plane in which there is a constant rotation of the 
directors as the wall is traversed: all directors lying in the 
xy plane. The field direction lies in the v axis. The 
distortion energy of all vectors is the same, but those 
vectors at the centre of the wall have the maximum 
misalignment to the field direction and hence the 
maximum overall energy. The overall energy profile is 
shown on the right of the diagram. 

As the simulation progresses, the directors far from 
the wall turn towards the field direction, compressing the 
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Figure 6 Simulation of the effect of a field on a splay bend wall. The 
initial conditions (a) define a wall, shown as a director map of one layer 
through the lattice on the left, and the energy profile on the right. 
q b) The equilibrium structure after applying a field of coefficient F - 
o2. The distortion is now confined to a narrower width 

wall, and increasing the elastic distortion at the centre. 
Figure 6b shows the equilibrium texture for the field 
strength applied (the simulation having been run for 
many thousands of iterations after the directors were 
seen to stop moving). The wall has narrowed to an 
equilibrium width and has been stabilized by the field. If 
the effect of a field were to be removed from the 
simulation after reaching equilibrium with the field 
applied, the wall would widen once more: the enhanced 
alignment induced by the loss of the field. The strength of 
the field applied determines the equilibrium width of the 
wall. Figure 7 shows the relation between F and the 
equilibrium wall width as measured from the lattice 
simulations. The width of the wall is defined as the 
number of vectors between the points at which the 
director lies at greater than 10 ,30  ° and 50 "~ from the field 
direction. The simulations were performed on a lattice 
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Figure 7 Equilibrium boundary width simulated with various field 
strength coefficients. The width is defined as the number of lattice 
vectors between either side of the wall which lie at a greater than 10 °, 
30 ° or 50 ° angle to the field direction 

with 1000 vectors in the x direction (across the wall). The 
central portion of the width vs 1/F graph is linear, but 
at low field strengths (towards the fight of the diagram) 
the wall width is of the order of the model size and thus 
the vectors 'feel' the model edges (they are influenced 
by fewer neighbours and therefore tend to lie towards 
the field direction), limiting the wall width, so the width 
does not increase linearly as expected. At high field 
strengths (towards the left of Figure 7) the data do not 
indicate a straight line through the origin, as expected 
(at infinite field strength the boundary has no width), 
because the boundary has become very compressed at 
high fields, and neighbouring vectors take up relatively 
high angles to one another on the lattice. Equation (1) is 
derived from elastic energy expressions assuming the 
angles between successive directors is small. The energy 
expression used in the model (equation (6)) accommo- 
dates high angles, but results in an offset in the data for 
high F where equation (1) no longer holds. The offset is 
the same whatever angle is chosen to define the edge of 
the wall, and whatever the lattice size. Measurement of 
the gradient of the linear part of this graph cannot 
directly lead to a relation between the field strength and 
the elastic constants of the material as both sets of units 
are arbitrary, but the gradient increases as the angle 
defining the wall edge decreases, as predicted from 
equation (2). Note that the energy of interaction of the 
field with a director is independent of the volume over 
which that director represents orientation, whereas the 
energy of elastic interactions between neighbouring 
vectors does depend upon the distance between them, 
and so the ratio between F and the elastic constant is 
dependent upon the scale of the model. 

DEFINITION OF DOMAIN WALLS AND 
THEIR INTERACTION 

The nature of a wall may be defined in a similar way to a 
disclination line 21, that is by a rotation vector which 
defines the axis of the 180 ° rotation of the director as 
the wall is traversed. The splay/bend or twist character 
of the wall is determined by the angle of this rotation 
vector to the plane normal of the wall. If the rotation 
vector and the plane normal are parallel, the wall is of 
twist character; if they are perpendicular it is based on 
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Figure 8 Inversion walls changing nature between splay/bend and 
twist types. (a) The rotation vector is constant and the direction of the 
wall changes. (b) The wall direction remains constant, but the rotation 
vector smoothly rotates such that the wall nature is changed. 'Pin-head' 
notation is used throughout this paper to indicate vectors lying out of 
the plane of the page: the point of the 'pin' is directed out of the paper, 
towards the reader 

splay/bend distortions. For the case that the orientations 
of the directors far from the wall are along the field axis, 
then at the centre of the wall the directors will be exactly 
perpendicular to the field. Hence any wall induced by an 
applied field will have its rotation vector perpendicular to 
the field direction. It follows that for a wall lying 
perpendicular to the field, its normal (parallel to the field) 
is necessarily perpendicular to the rotation vector, and 
thus the wall must be of splay/bend character. On the 
other hand, a wall parallel to the field can be either splay/ 
bend or twist character. Figure 8 illustrates that the 
nature of a wall may change either as a result of the wall 
changing direction with respect to a stationary rotation 
vector, as shown in Figure 8a, or as a result of the 
rotation vector smoothly changing direction along a 
planar wall, as in Figure 8b*. 

* K16man 22 showed that the nature of a 180 ° wall in a ferromagnet may 
be changed between Bloch and N+el type by the inclusion of a 
disclination: the disclination being two half strength disclination lines 
with perpendicular rotation axes superimposed to one another, 
resulting in no core singularity 
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Figure 9 The interactions of the domain walls. (aj Walls of the 
opposite sign attract one another and annihilate to form a well aligned 
nematic. Walls of  the same sign repel and may open oul to form an 
undistorted director field (b), or be contained by boundary condition,~ 
or an external field, stabilizing the walls (c) 

Domain walls of opposite sign or "handedness" will be 
attracted to one another and can annihilate to form a 
monodomain of liquid crystal, as is illustrated in Figure 
9a. If the walls are of the same sign, the force is repulsive, 
and the walls repel one another. If the walls are no! 
contained, either by boundary conditions or by the 
application of an external field, the walls will widen 
without bound to give a monodomain as shown in 
Figure 9b, but if they are constrained by a field, and of 
the same sign they are stabilized (Figure 9c). 

D I S C L I N A T I O N / W A L L  I N T E R A C T I O N S  

As both a disclination and an inversion wall may bc 
defined by a vector describing the axis of the 180' 
rotation of the director, so it is the summation of these 
vectors that determines the effect of combining these 
defect types. In the case of  disclinations, the singularities 
will attract and annihilate to form undistorted material 
if the rotation vectors of the disclinations are antipar- 
allel. In a similar way, two walls of opposite 'handedness" 
(i.e. with their rotation vectors antiparallel) will attract 
one another and annihilate (as discussed above) and, as 
for disclinations, two walls with parallel rotation vectors 
(the same "handedness') will repel one another. Similarly 
the rotation vector of a wall and o fa  disclination can also 
be summed in this way, and thus a disclination line will 
define the limit of a wall with an antiparallel rotation 
vector. Examples of  disclinations which terminate walls 
are depicted in Figure lO. 

When an external field is applied to a disclination line 
in which the directors to one side of the disclination line 
are parallel to the field direction, the disclination line will 
tend to move so as to increase the volume of aligned 
material. In general, therefore, disclination lines will 
move in a preferred direction in response to an applied 
field. However, for the special case of a disclination with 
a rotation vector parallel to the field direction, all the 
surrounding directors lie perpendicular to the field 
direction, and so the disclination will not be moved by 
the action of the field, 

We have shown that a disclination line defines the limit 
of a wall with the same rotation vector. If  a disclination 
loop (a type I loop 2t, with a constant rotation vector) 
were to form, therefore, within an area of undistorted 
liquid crystal, it would enclose an area of  wall with the 
same rotation axis as the disclination (Figure l la). 
Conversely, were a disclination loop to form within an 
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Figure 10 An inverston wall will be terminated by a disclination with 
the same rotation vector (QD) as that of  the wall g2w). Examples are 
~hown here for (a) an s - - 1/2 wedge disclination terminating a splay/ 
bend wall, (b) an s = + 1/2 wedge disclination terminating a splay/bend 
wall. (c) a twist disclination terminating a twist wall, and (d) a mixed- 
type disclination terminating a wall involving both splay/bend and twist 
distortions (in this case the rotation vectors are no longer in the plane of 
lhe page). In all cases the field direction is vertical, and the wall (above 
the disclination) changed to a monodomain  (below the disclination) 

( l l  - -  

X 

monodomain I wall I monodomain 

X 

"ivall t monodomain [ w a i l  
• , ° 

Field 

Figure I ! /a) A disclination loop in a monodomain  surrounds an area 
of inversion wall. (b) A disclination loop within an inversion wall 
surrounds an area of undistorted liquid crystal within the wall 

area of domain wall and the rotation vector of the loop 
and the wall were parallel, the loop would enclose an 
area with no inversion wall (Figure llb).  The question 
should be addressed as to whether in each of these cases 
the disclination loop will grow or shrink in response to 
the distortion energies of  the wall and disclination, thus 
forming either a larger area of  wall or of  undistorted 
liquid crystal. 

An expression for the energy of a domain wall per unit 
area may be derived by considering the angle ~ of the 
director rotating in a plane perpendicular to the rotation 
axis of the wall. Hence: 

.w Vodx  = ~r (8) 
0 

where W is the width of the wall. Assuming that VO is 
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constant across the whole wall width, then 

71" 
V~b = ~ (9) 

thus the elastic energy of a unit area of wall, if all 
distortions have the same elastic constant, K, is 

f Ewall = 1K(V4)2dx -- KTr2 (10) 
2W 

The energy associated with a disclination loop (if 
interactions of the disclination line with itself are 
ignored) is given by 21 

E~oop = 2~rKs~R In ~ + ~  

where R is the radius of the loop and r~ the radius of the 
core of the disclination of strength s. 

A type I disclination loop set within an area of 
undistorted liquid crystal will enclose a wall (Figure lla), 
and, not surprisingly, will tend to collapse, decreasing 
both the length of  the loop and the area of wall. 
However, for a type I loop which encloses a mono- 
domain within a wall (Figure 11b), the energy of the 
system is given by the expression: 

7 r 2 K ( ( ( R )  1) # ) ( 1 2 )  
gtotal = Ewall  q-- - ~  R In ~ + ~ - 

Figure 12 indicates how the energy of the system 
changes with increasing loop radius. The core radius is 
taken as r~ = 20 ~ 3  and the curves are plotted for wall 
widths W = 10#m and W = 3#m, the values being 
those measured from micrographs of polymer orientated 
in a moderate (1 Tesla) field and a high (6 Tesla) field s. In 
both cases the energy passes through a maximum before 

decreasing with increasing loop radius, indicating that, 
once a loop of sufficient size has been nucleated within a 
wall, the loop will expand outwards, growing an area of 
undistorted liquid crystal within it and consuming the 
wall. For the wall width of 10#m, a loop of approxi- 
mately 20 #m would have to nucleate before it would 
grow to destroy the wall. This is too large a size for 
nucleation to occur under usual circumstances, but as 
the wall width is decreased (i.e. as the field strength is 
increased) the necessary nucleation size becomes sub- 
stantially smaller. The possibility of loops expanding to 
consume a wall may account for the apparent lack of 
domain walls in the samples treated under high fields s. 
Such calculations do not include the effect of the 
magnetic field explicitly, only in so much as to stabilize 
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Figure 12 The variation in energy with loop radius for a disclination 
loop formed within a wall,  calculated from equation (12) with wall  
widths W = 10/zm and  W = 3#m 
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Figure 13 Model section through a 'hedgehog' point defect (a) under the influence of a field (F  = 0.2). As the point relaxes (b-d),  an s = + 1 / 2  
tangential loop is formed (i.e. one in which the rotation vector lies parallel to the line of the disclination right around the loop) which expands to 
enclose an area of well aligned directors. Eventually the loop is lost from the edge of the model 
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Figure 14 The relaxation under the influence of a field (F = 0.2) of a nematic containing a particle which aligns the local directors homeotropically to 
its surface. Initially (a), the particle imposes a radical vector field throughout the lattice: these are the starting conditions. As the field is applied (b), the 
defect is distorted to align more vectors to the field axis. but a loop is not lbrmed to destroy the point. After this number of iterations, the texture has 
reached equilibrium: the vectors are no longer changing in orientation 

the wall and to set the wall width. The expression for the 
energy of  the disclination loop assumes an equilibrium 
director field a round the disclination core when no field 
is applied. 

Disclinations that pre-exist within a structure and are 
free to move are liable to do so to destroy domain walls. 
The influence o f  the field is such that it enhances the 
movement  of  disclinations with antiparallel rotat ion 
vectors (or "opposite sign') towards one another,  and 
eventually they annihilate. Thus it is the movement  of  
disclinations, given sufficient mobility, that provide a key 
mechanism for the relaxation o f  textured nematics under 
the influence o f  the field. 

P O I N T  D I S C L I N A T I O N S  

In the case of  point defects in liquid crystals, the field will 
tend to break these points into disclination loops (of type 
II as defined in ref. 21) in which the rotation vector follows 
the loop around, the rotation vector (but not necessarily 
the line of  the loop) lying in a plane perpendicular to the 
field direction. The loop forming at the centre of  the point 
defect vector field will thus enclose an area of  mono-  
domain. For  example, simulations of  the relaxation of" a 
hedgehog defect (one in which all directors radiate out 
from a central point) without a field indicate that it will not 
spontaneously decompose into a large disclination loop, 
but when a field is applied, the point splits into a loop in 
which the vector of  rotation of  the disclination is parallel to 
the tangent of  the loop at all points around it. Figure 13 
shows this process with series o f  director maps o f  a single 
plane through the loop, showing the two points at which 
the loop cuts this plane. As the point relaxes, the 
disclination loop grows until it is lost from the edges o f  
the model and a monodomain  is formed, orientated in the 
field direction. If the starting structure were to contain 
point defects stabilized by second phase particles which 
encourage homeotropic alignment of  the director to the 
particle surface, the defect may be stabilized even under 
magnetic alignment, the director field being distorted so as 
to increase alignment to the field, This effectively 
compresses the hedgehog into a cylindrically symmetrical 
wall normal to the applied field. The progression is shown 
in Figure 14: the 16 vectors at the centre of  the lattice are 
fixed in their orientation to simulate the effect of  a particle. 
On application of  the field (Figure 14b), the point defect 
remains stable. 
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Figure 15 The junctions of three domain walls (dotted lines) and the 
director fields around them. Those vectors towards the centre of the 
domains must lie parallel to the field direction (shown in bold), and 
those at the very centre of the walls must lie perpendicular to the field 
direction tshown in bold). In each example there is disclination at the 
junction between the three walls with a rotation axis as indicated 

J U N C T I O N S  B E T W E E N  D O M A I N  W A L L S  

The domains that form on magnetic orientation have 
been observed to tessellate; the domains are defined by a 
cont inuous network of  walls which meet along lines 
forming the junct ion between three walls. At  a meeting 
point of  three walls, a strength { disclination is 
necessarily formed along the axis of  intersection of  the 
walls. Kl~man illustrated this for the junction o f  three 
Bloch walls in magnetic materials z2, and W o o d  and 
Thomas  z4 observed the inclusion of  disclinations in 
domain walls in oriented thin films. Some examples of  
the line junctions of  three walls with their associated 
disclinations are shown in Figure 15. The network of  
these triple wall lines in the domain structure may be 
thought  of  as a network of  disclination lines, and the 
walls connecting them as the effect of  the applied field on 
the director field a round the disclinations. Considerat ion 
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Figure 16 The action of a field on a disclination, in this case an s = - 1/2 wedge, with rotation vector perpendicular to the page. If no field is applied 
(box with bold outline) the disclination would only move under the influence of other defects or surface interactions. (a) A field applied horizontally 
(perpendicular to f~o) mobilizes the disclination, forming a temporary wall (shown with a dashed line) and the disclination moves to the left, 
swallowing the wall. If  the field is applied vertically (b) the mobilized disclination moves to the right. In (c) the field is applied parallel to f~D and the 
surrounding vectors orientate towards the field such that three walls are created. The resulting triple wall line is stable, and does not move. Another 
option when the field is applied parallel to ~D (d), is the formation of only one wall (d '). f~D rotates to lie perpendicular to the field (i.e. it becomes a 
twist disclination), and the disclination is mobilized to destroy the wall (d "). 
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Figure 17 The action of a field on a loop of disclination with rolalion 
axis parallel to the field. (a) The loop before the field is applied. The 
rotation axis of the disclination (~l)) lies in the plane of the loop. and so 
the character of the loop changes between wedge and twist as the loop is 
circled. On application of the field (b), if a triple wall is nucleated, it 
extends right around the loop, in this case forming a wall across the 
centre of the loop, and two truncated cones o1 wall extending awa> 
from the circle on eilher side of the loop. The wails are indicated by gre} 
lines 

of the effect of an applied field on a disclination ( Figure 
16) highlights the necessary factors required for a triple 
wall line to be stabilized, If no field is applied to the 
singularity (a -4  wedge line is chosen for this example), it 
is stable, and will only move in response to interactions 
with other disclinations, surfaces or external fields. This 
defect is shown in Figure 16 in the box with the bold 
outline. If a field is applied perpendicular to the rotation 
vector of the disclination, the disclination is mobilized 
either to meet with other defects or to move out of  the 
system (Figures lfa and ldb). For a field applied parallel 
to the rotation vector, then it is possible for three walls to 
be established around the disclination core, and a stable 
triple wall line is formed (Figure 16c). Alternatively, if 
the surrounding vectors move in a different combination 
of directions towards the field (Figure 16d), then only 

one wall is formed. The other directors can then move 
towards the field direction (Figure 16d'), changing the 
rotation vector and hence mobilizing the disclination to 
leave a defect free area aligned to the field (Figure 16d"). 
Although this example has been given for a pure 
wedge disclination ( s - - - ~  strength disclination) with 
~ts core running in the direction of the applied field, the 
result is general: the response of a disclination to an 
applied field is dependent only upon the relative 
directions of  the disclination rotation vector and the 
field vector. On application of  a field, each director 
surrounding a disclination rotates towards the field 
axis in the direction that is the shortest route towards the 
lield axis: the vector will always rotate about an axis 
perpendicular to both the director being rotated and the 
field direction. Only when the director lies exactly 
perpendicular to the field direction are there two senses 
in which the director can move. This degeneracy is 
necessary for the formation of a triple wall line from a 
"perfect" disclination (one in which, as illustrated in 
Figure 16, the director field away from the core always 
lies perfectly perpendicular to the rotation axis of  the 
disclination), and so only in the special case of the 
disclination rotation axis lying parallel to the field 
direction can a triple wall line form. However. the 
director field away from the core of the disclination is not 
defined entirely by the topology of the singularity, and 
the elastic interactions with the surrounding director 
field will also influence the preferred direction of 
reorientation to the field. Thus, as the angle between 
the field and disclination rotation axes increases, the 
influence of the rotation axis to form a triple wall 
decreases, but the triple wall may still be formed as a 
result of elastic interactions from other directors in the 
neighbourhood. If the starting structure of the material 
is envisaged to consist of  large areas of  monodomain 
in random directions with defects between, a result of 
the powder from which the samples were made, then 
lhe response of the directors around the disclination 
will largely be a result of the orientation of these 
particles. Nevertheless, it is clear that a triple wall line 
which does form will have, along the junction line itself, 
a disclination with rotation vector parallel to the field 
axis, 

The vector defining the direction of the disclination 
line determines only the wedge/twist character of the 
disclination and plays no part in the stability or 
~therwise of the walls that form on application of the 
lield. This may be illustrated by consideration of the 
effect on a type I wedge/twist disclination loop of a field 
applied parallel to the single rotation axis defining the 
whole loop (Fi,gure 17a). A triple wall line may be defined 
right around the disclination loop, forming a wall within 
the loop and two truncated cones of wall extending either 
side of the loop (Figure 17b). 

Once a triple wall line has been nucleated in one region 
of a disclination, it will spread along its length. For a 
triple wall line to end, further defects must be included. 
The walls that form around a wedge-twist loop on 
application of a field parallel to ~D are shown in Figure 
17h. These walls extend to infinity unless they meet 
another disclination which may bound them. Thus, once 
the wall network has been started, nearby disclinations 
will be "dragged in' to form triple point junctions in order 
to minimize the wall area. Hence the tetrakaidecahedron 
structure is formed. 
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Figure 18 Director maps from a simulation with a starting condition of random directors (a) under the influence of an applied field (F = 0.2). 
(b) During relaxation walls begin to form, but they are bounded by disclinations of opposite sign (e.g. towards the left of the diagram) which move 
towards one another under the influence of the field (c) until eventually all defects are lost, and all vectors are aligned to the field direction (d) 

F O R M A T I O N  OF DOMAINS 

I fa  lattice is set up with random vectors (Figure 18a), and 
its relaxation under the influence of  a magnetic field 
simulated, the beginnings of  wall formation may be 
observed (Figure 18b), but the walls are always bounded 
by disclinations which attract and annihilate (Figure 18c) 
until eventually a monodomain aligned in the field 
direction is formed (Figure 18d). A stable domain 
structure cannot be simulated from random starting 
conditions. It should be noted that the volume modelled 
(where a cell in the model is of the order of the diameter 
of the core of a disclination 21) is very much smaller than 
that of  any observed domain. 

In practice, the polymer is not aligned from a 
completely random array of  directors, but initially 
consists of local regions of quite well aligned polymer, 
which are not orientationally correlated to one another. 
Between these regions the liquid crystal contains many 
defects (points and/or disclinations). On application of 
the field to a sample, these well-ordered areas reorientate 
to the field direction and the areas of defects are 
compressed. The disclinations (any points present may 
be made into disclination loops by the action of the field) 
are mobilized, and annihilate; only some of those with 
the appropriate rotation vectors remain, and the walls 
between them result from the compression of the 
distortion around the disclination by the action of the 
field. The formation of  a network of domains relies on an 
interlocking network of  stabilized disclinations sur- 
rounding well-aligned regions. This may result from 
the particular starting microstructure of the material 
produced on melting a fine powder containing well 
aligned material. Note that the domain structure 
proposed above contains only disclinations with rotation 
vector parallel to the field direction. 

An isolated domain in which the walls surrounding the 
aligned region did not enter triple wall lines would be 
unstable. Some of the walls on opposite sides of such a 
domain would necessarily be of opposite handedness, 
and therefore they would attract one another, decreasing 
the domain size and wall area until all the walls 
annihilate in a continuous process. 

Once a network of  domains is formed, the domains 
cannot shrink, and the observed domain structure is that 
resulting from the minimization of domain wall area. 

Those walls which are at the ' top' and 'bottom' of the 
elongated domains are nearly perpendicular to the field 
direction and so contain principally splay/bend distor- 
tions. These will be of higher energy in polymer liquid 
crystals (which have a high splay elastic constant) than 
those down the longer 'sides' of  the domains which lie 
parallel to the field and so can contain twist distortions. 
This minimization of  splay distortions could account for 
the observed elongation of the domains along the field 
direction s . 

As many defects have been mobilized by the field to 
annihilate with one another during the orientation 
process, the orientated structure is on a larger scale 
than the untreated, but it still contains compressed 
defects (walls and disclinations) and so on removal of the 
field the orientation will be lost by the relaxation of 
elastic stresses in these defects, resulting in a coarser 
microstructure. 

CONCLUSIONS 

Under the influence of an applied field in an appropriate 
direction, an inversion wall will become narrower 
until an equilibrium width is reached. The width is 
inversely proportional to the field strength. The shape of 
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a splay/bend wall is determined by the ratio K1/K). 
Measurements from orientated samples indicate that 
K i ;> K 3 for these materials. 

An inversion wall may be described by a rotation 
vector in a similar way to a disclination. The direction of 
this rotation vector with respect to the wall plane normal 
determines the splay/bend or twist character of the wall, 
and it is the summation of these vectors which 
determines the interaction behaviour between walls or 
between walls and disclinations. 

A disclination loop which encircles an area of wall 
within a monodomain will tend to collapse and 
annihilate, but a disclination loop within an area of 
wall which encircles well orientated material will grow to 
consume the wall if the loop radius is greater than a 
critical value. This radius is smaller for larger applied 
fields. 

In general, a field acts to mobilize the disclinations by 
defining a direction in which they can move to increase 
the volume of materiM aligned parallel to the field. Thus 
the field acts to relax the structure, decreasing the overall 
number of disclinations. Disclinations whose rotation 
axis is parallel to the field are not mobilized by the field. 
however, and ma? form the junction between three 
domain walls. 

A triple wall junction may be formed around a 
disclination if the directors around the core reorientate 
towards the field direction in the appropriate manner. 
The closer the field direction is to the rotation axis of 
the disclination, the more probable this would be, but 
it also depends upon the wider elastic interactions with 
the directors away from the core of the liquid crystal. 
A triple wall line, of any orientation, will have a 
disclination line at its core with rotation axis parallel to 
the field direction. Once a wall network is started by the 
formation of a triple wall junction, other disclinations 
will be dragged in to form the junctions between walls in 
order to minimize the overall wall area, and so the 
domain structure is formed. 

The walls perpendicular to the field direction are 
necessarily of the splay/bend type, but those with the 
field axis in the plane of  the wall may contain twist 
distortions. The observed elongation of the domains 
along the field direction may be accounted for by the 

reduction in splay distortion resulting from an increase in 
the relative area of the lower energy twist walls. 
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